Using Distributed Temperature Sensing (DTS) to Assess Soil Moisture In Agricultural Settings

Christine E. Hatch, UNR Geological Sci. & Engr.
Scott Tyler, P.I., UNR Geological Sci. & Engr
Tyler Cluff, UNR M.S.
Mark Hausner, UNR graduate student
Wally Miller, P.I., UNR Nat. Res.
Erin Carroll Moore, technician, UNR Nat. Res.
Jay Davison, UNR Coop. Ext.

安装光纤电缆在内华达州梅森谷附近的替代农业田地里。
Outline

I. Introduction and Motivation

II. Theory and Thermal Model

III. Methods for measuring soil moisture

 • Remote Sensing: Plane, Satellite
 • Ground-based: Geophysical, Probe
 • DTS Active or Passive

IV. Field application: Walker Basin, NV

 • Passive DTS vs. Thermal Diffusivity
 • Thermal Diffusivity vs. soil moisture

IV. Conclusions and Future Direction
Soil Moisture

- Near surface water and energy balance
- Evapotranspiration, climate modeling
- Agricultural water management
- Landfill Engineering
- Nutrient/ contaminant transport
- Nuclear repository engineering
- Efficacy of Geophysical methods
III. Methods for Estimating Soil Moisture

Methods for measuring soil moisture

• Remote Sensing: active and passive microwave, electromagnetic resistivity
• Ground-based: Geophysical, Heat dissipation probe (HDPs)
 ➤ Typically limited to top few mm of depth (remote sensing)
 ➤ or limited to point measurements in space (hand probes)
• Thermal methods: Active or Passive DTS
 ➔ GOAL: Develop an integrated, near surface method for assessing soil moisture over large areas that is detailed in time
Heat in the Subsurface

- Surface
- Depth 1
- Depth 2

Temperature vs. Time Graph:
- Surface line
- Depth 1 line
- Depth 2 line

- Amplitude reduction
- Phase shift
II. Soil Thermal Regime

1D Heat Transfer (Conduction):

\[\frac{\partial T}{\partial t} = K_T \frac{\partial^2 T}{\partial z^2} \]

Solution:

\[T(z, t) = T_A + A \exp \left(\frac{z}{d} \right) \sin \left(\omega t + \phi + \frac{z}{d} \right) \]

Phase shift:

\[\Delta t = \frac{z}{\omega d} \]

Damping depth:

\[d = \sqrt{\frac{2K_T}{\omega}} \]

Thermal Diffusivity:

\[K_T = \frac{\lambda}{\rho c} \]

Jury and Horton, 2004, 6th Ed.
Thermal Diffusivity K_T

Water Content 0.3 0.4 0.5 0.6

36.0
28.8
21.6
14.4
7.2

Sand n=0.4
Sand n=0.6
Clay n=0.6
Peat n=0.9

Jury and Horton, 2004, 6th Ed.
Distributed Temperature Sensing

Rayleigh Scattering

Stokes \(\rightarrow\) Raman (Stokes) \(\rightarrow\) Brillouin in frequency

Brillouin in amplitude

Anti-Stokes \(\rightarrow\) Raman (Anti-Stokes)

Amplitude/Intensity

Tyler, et al., J Glaciology, 2008
Ongoing DTS Soil Moisture Studies

ACTIVE:
- Apply a heat pulse, and measure $T(t)$
 (analogous to HDP, e.g. Mori et al. 2003, Ren et al., 2003)
- Provides more certainty in values than passive.
- Oregon State University (Selker),
 Lawrence Berkeley National Laboratory (Freifeld)

PASSIVE:
- Use natural thermal cycles for heat signal (e.g. Horton et al. 1983)
- Easier to calibrate, operate and maintain.
- UNR, OSU, Univ. of Delft (Van de Geisen)

- DTS systems may yield thermal diffusivity and soil water content over large spatial domains at high frequency, without the need for distributed sensors.
IV. Field Application: Walker Basin
Improving water use efficiency
Installing fiber optic cable

- 1000m of armored cable installed at 15cm depth
- Dragged and seeded
Temperature vs. Time

\[\theta = 7\% \]

\[K_T \approx 30 \text{ cm}^2/\text{hr} \]

Soil temperature

Air temperature

\[\Delta t \]

Soil temperature

Air temperature

7/26

7/27

7/28

Time

Air Temperature (°C)

Soil Temperature (°C)

Dry Soil
During Irrigation

<table>
<thead>
<tr>
<th>Date</th>
<th>Soil Temperature (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7/26</td>
<td>30</td>
</tr>
<tr>
<td>7/27</td>
<td>28</td>
</tr>
<tr>
<td>7/28</td>
<td>26</td>
</tr>
</tbody>
</table>

DRY: $\theta = 7\%$

IRRIGATED: θ varies from 14% to 26%

During irrigation events, the soil temperature varies significantly, with the irrigated soil experiencing a higher range compared to the dry soil.
Soil Moisture & Thermal Diffusivity

- Soil Moisture (\%): 25, 20, 15, 10, 5
- Thermal Diffusivity (cm²/hr): 100, 80, 60, 40, 20

- Irrigation event:
 - 7/26
 - 7/27
 - 7/29

- Drying:
 - 7/28

- DRY SOIL:
 - 7/26
 - 7/29
Conclusions

• DTS is an effective, easy to install, tool for measuring integrated soil T over a wide range of time and area.

• Simple thermal model shows promise of passive method for assessing soil moisture and initial data illustrate that thermal diffusivity (K_T) tracks soil moisture content (θ).

• Future Work: Improved signal processing to derive heat capacity (greater sensitivity to θ).

• Passive DTS yields integrated effective K_T over top 15cm, which provides a significant estimate of θ storage for models.

• Active DTS (heated cable method e.g. Selker et al.) may be much more accurate because heat pulse is a step function; however, it is limited to a single depth and time.
Thank You!

U.S. Bureau of Reclamation